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Abstract—Within the autonomous driving community,
millimeter-wave frequency-modulated continuous-wave (FMCW)
radars are not used to their fullest potential. Classical,
hand-designed target detection algorithms are applied in the
signal processing chain and the rich contextual information
is discarded. This early discarding of information limits what
can be applied in algorithms further downstream. In contrast
with object detection in camera images, radar has thus been
unable to benefit fully from data-driven methods. This work
seeks to bridge this gap by providing the community with a
diverse, minimally processed FMCW radar dataset that is not
only RGB-D (color and depth) aligned but also synchronized
with inertial measurement unit (IMU) measurements in the
presence of ego-motion. Moreover, having time-synchronized
measurements allow for verification, automated or assisted
labelling of the radar data, and opens the door for novel
methods of fusing the data from a variety of sensors. We
present a system that could be built with accessible, off-the-shelf
components within a $1000 budget and an accompanying
dataset consisting of diverse scenes spanning indoor, urban and
highway driving. Finally, we demonstrated the ability to go
beyond classical radar object detection with our dataset with
a classification accuracy of 85.1% using the low-level radar
signals captured by our system, supporting our argument that
there is value in retaining the information discarded by current
radar pipelines.

Index Terms—radar, FMCW, sensor-fusion, autonomous driv-
ing, dataset, RGB-D, object detection, odometry

I. INTRODUCTION

N comparison to visible light and the lasers used by

lidar systems, millimeter-wave (mmWave) FMCW radars
use wavelengths that are much larger than fog, dust, and
other particles present in adverse driving conditions that limit
visibility. This longer wavelength allows the radar signals to
easily penetrate or diffract around such particles, allowing
mmWave radars to function as a robust, all-weather sensor[1],
(21, [3], [4].

While recent published works in autonomous driving at-
tempt to incorporate radars, the input from the radar consists
only of points with velocity, retaining little information from
the raw measurements [5], [6], [7], [8]. In these sources,
we see methods to increase the number of points such as
integrating over time and using inputs from multiple sensors.

$Indicates equal contribution.

In contrast, lidar provides a much denser point cloud than
radars and thus see more use in sensor fusion works.

The use of radars, however, should not be limited by
these sparse point cloud. The sparse points returned from
the commercial radar packages are the results of statistical
object detection algorithms (CFAR) [9], of which the goal is
to detect strong radio reflectors in the scene, with no intention
of capturing the semantic meaning of the objects. As a result,
the rich information of the reflected radar signal is discarded.
Therefore, current published work within the autonomous
driving community often does not exploit the capabilities of
radar to its fullest potential. In our work, we seek to remove
this limitation, furthermore, within a very small budget of
$1000.

In particular, our contributions include:

1) Modularized RGB-D-Radar architecture: We present
the modularized and expandable design of a raw frequency-
modulated continuous wave (FMCW) + RGB-D (color and
depth) system, ready to be integrated into robotics projects.
Our system is built using simple, off-the-shelf components that
cost less than $1,000 to assemble. Our system is also designed
with the purpose of functioning as an additional module for
existing autonomous driving data-collection platform that may
include lidars and other sensors.

2) Radar-Camera alignment method: We present an ap-
proach to automatically capture and label complex millimeter
wave radar signatures with the help of a calibrated RGB-D
camera.

3) Indoor and Street scenes dataset: As part of our work,
we publicly share! a novel dataset consisting of both indoor
and outdoor scenes. The indoor scenes include a variety of
rooms with different quantities of people and static clutter. The
outdoor scenes contain people walking and running together
with vehicles driving along a suburban street as well as scenes
recorded from a moving vehicle in a myriad of environments.
For the scenes recorded from a moving car, inertial measure-
ment unit (IMU) data is also provided. To the best of our
knowledge, there are no other public datasets that offer raw

All data used in this publication, including preprocessing code and associ-
ated documentation, is available at https://doi.org/10.13012/B2IDB-3289560_
V1. Code snippets for using the dataset and code documentation can be found
on the authors’ website.
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radar measurements, let alone aligned RGB-D images, IMU
measurements, and projected object labels generated with the
help of recent advances in RGB image object detection.

4) Rich object detection with radar: Finally, we show
the capabilities of our dataset in two applications. One for
semantic object detection, in contrast with classical radar
object detection, and micro-Doppler exploitation assisted by
RGB-D pose estimation.

A. Paper organization

The rest of our paper is organized as follows, Section II
covers recent works involving FMCW radars and their re-
lated use in autonomous driving. Section III provides a brief
overview of FMCW radar signal processing, its classical
signal processing chain and our proposed changes to it to
enable better exploitation by deep neural nets. Section IV
describes our system architecture, capabilities and limitations.
Section V describes the scenarios and configuration in which
we operated our system. Finally, in Section VI, we demonstrate
the capability of our dataset and system with high resolution
velocity estimation and temporal synchronization task and a
small object radar signature classification task.

II. RELATED WORKS

Autonomous driving application is the impetus behind
sensor fusion research. In a recently published dataset,
nuScenes [10], automotive radar is listed as one of the avail-
able sensors. However, the radar processing pipeline (Fig. 1)
discards all of the semantic information and only provides
sparse point clouds. In PointPillars [11], the authors proposed
a method to convert point clouds into pseudo-images, allowing
the use of convolutional neural networks for object detection.
However, due to the sparsity of the points that commercial
radar packages return, with some manufactureres even having
an upper limit of 64 points[12], [13], such an approach is
unlikely to provide quality detection results. While there seems
to be a significant amount of research that attempts to utilize
radar information, the sparsity of information available from
existing radar setups greatly constrains its effectiveness in
early stage processing, forcing many systems to incorporate
radar in later stage post-processing.

In two much more recent datasets [14], [15], lower level
radar signals are available. The radar however, differs signifi-
cantly from the solid state radars typically found in vehicle
systems. This radar functions similarly to a lidar and is
mechanically spun at 4Hz and 400 angle bins are sampled
per revolution[16]. Only range-magnitude measurements are
available at each azimuth and the entire field-of-view is not
observed simultaneously. A row in a frame in this dataset is
equivalent to 1 transmitter and 1 receiver using a single chirp
and after taking the magnitude of the range FFT in our radar
setup (mathematical details are provided in Sec. III-A).

The closest related work is RF-Pose [17] and Fusion-
Net [18], where minimally processed radar signals are used to
produce object detections with the help of a deep neural net.
Authors of RF-Pose [17] demonstrated empirically the possi-
bilities of minimally processed FMCW radars when coupled

with today’s advances in deep learning. Using a 16x16 2D
array of antennas, they demonstrated the capability of predict-
ing a human’s pose with a customized FMCW radar system
configured for short range detection. The radar used by the
authors had a wavelength of approximately Scm, thus falling
below the Rayleigh criterion [19], [20] for humans, causing
the reflection to be highly specular. Whereas in our work and
in [18], a wavelength of approximately 3.8mm is used. This
enables better spatial resolution and lower specularity at the
cost of poorer penetration through thick building materials. In
comparison with FusionNet [18], we include depth information
with an RGB-D sensor, enabling an accurate projection of the
camera image into world coordinates, rather than relying on
a planar road assumption. Lastly, and most importantly, our
system is easily reproducible, using off-the-shelf components
and a widely available commercial radar platform [21], with
a total cost below $1000.

III. PRIMER ON FMCW RADAR SIGNAL PROCESSING

There exists extensive literature about radar signal process-
ing since its invention the 1930s. We do not intend for this
section, nor is it possible, to be comprehensive, but we hope
to cover the basics in sufficient detail to enable the effective
use of our novel dataset. We limit our discussions mainly to
the type and characteristics of our radar system.

Radars work on a simple idea: send out a radio signal and
wait for an echo. The time it takes for the echo to arrive is
directly proportional to the distance of the reflecting object.
A simple manifestation of this concept is a pulse radar.
Transmission occurs for an instant, followed by a period of
waiting for echoes. Mathematically, the transmitted signal at
any instant, ¢, can be defined as:

Ste = Az (t) cos(2m fet + ¢o). (D

Where Ay, is a constant transmit amplitude when the radar
is transmitting and zero otherwise, f. is the transmission
frequency, and ¢ is the starting phase. Without loss of
generality, we can assume that the starting phase is 0, and we
will drop the term for clarity of notation, and only reintroduce
it when its value is no longer negligible.

In addition to being able to estimate a target’s range from its
reflection’s time delay, its velocity can be determined from the
frequency shift of its reflection due to a phenomenon known as
the Doppler effect. Because the transmit frequency is constant,
a target with no radial velocity will reflect the signal at the
same frequency that was transmitted, while a moving target
will induce some measurable Doppler shift of that frequency.
Although simple in terms of operating principles, due to the
speed of light, pulse radars are blind at short ranges (below
1km). While not an issue for long-range applications (e.g.
aircraft, ships), this makes them of limited use where the range
is small.

Consequently, for small working ranges in automotive and
small robot applications, pulse radars cannot be used. For
these applications, Frequency Modulated Continuous Wave
(FMCW) radars are a better fit as they allow for very short
working ranges. Similar to the pulse radar, we receive a time-
delayed and Doppler-shifted version of the transmitted signal.
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Fig. 1. A comparison of commercially available automotive FMCW radar systems with our raw radar dataset. We record the unprocessed ADC readings
from the antennas and differ processing to a later stage. With off-the-shelf components, we can achieve a data rate of up to 325 Mbps for the radar alone.
This is in contrast with the heavily processed and sparse point targets of commercially available radar packages. Furthermore, commercially available radar
packages are often black-boxes that contain non-trivial optimizations to radar waveform and antenna pattern design.

In contrast to the pulse radar, however, both the transmitter
and receiver are on simultaneously, mitigating the blindness
at very short ranges. Additionally, FMCW radars transmit a
signal, often referred to as a chirp, whose frequency changes
with time:

Stz (t) = Age(t) cos(2m(fe + fr(8))E). (2)

Where f. is the starting frequency, and f,(¢) is a function
describing how the frequency changes over time. One possible
waveform for a single chirp is a sawtooth wave (in frequency-
time), with one period as:

B
Stz (t) = Ag(t) cos (27r (fct + 2t2>> , for0<t<T
3)
Where B is the slope of the rate of change in frequency.
For the rest of the discussion, we assume that we are working
with a sawtooth wave.

A. Estimating range with FMCW Radars

The reflected waveform is a delayed version of the transmit-
ted wave as shown in Fig. 2a. Again, by measuring this delay,
denoted 7, we can compute the radial distance of the object
from the radar. At the receiver, a mixer (multiplier) mixes the
reflected signal with the transmitted signal. Next, this signal
passes through a low-pass filter and is sampled by an ADC.
At any instant, we can describe the signal as:

Spe(t) = App(t) cos(at) cos(St) 4)

Where, A, is the received amplitude, « is the frequency
that is being transmitted and § is that of the reflected signal.
Using the product to sum identity, we can see that:

Sy (t) = %t (cos(a — B)t + cos(a + B)i) 3)
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(b) Consecutive FMCW Radar Chirps

Fig. 2. For the scenario with one target, the reflected waveform is a time
delayed version of the transmitted signal. With prior knowledge of the slope
B, the time delay 7 can be deduced from the frequency of the low-pass-filtered
signal.

In this form, we see that there are two frequency compo-
nents in the received signal, one of much lower frequency
than the transmitted waveform and one of very high frequency.
After low-pass filtering, we are left with a low frequency signal
which demands a far lower performance ADC than what the
original GHz-band signal would have required.

Since the slope is known, we can determine the distance
by leveraging its relationship to the time delay, slope, and
frequency:

Tizd,f:BT (6)
co
o f
d= 55 (7N
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where ¢ is the speed of light in free space.

Since the mixed signal gives us a frequency difference, all
we have to do is perform an FFT over the entire chirp, and the
(frequency) location of the (amplitude) peak is directly pro-
portional to the range of the target. In FMCW radar literature,
this is often referred to as the “intermediate frequency”, “beat
frequency” or the IF signal.

B. Estimating Doppler

With a sawtooth wave, there is no way to disentangle
frequency shifts that are due to a non-zero relative velocity.
It is treated as measurement noise for low-velocity targets. If
this is not the case, a different waveform might be a more
suitable choice, such as a triangular waveform as in [22].

While we are unable to resolve the velocity of a target from
a single chirp, if we look across multiple chirps as depicted in
2b, the relative velocity can be recovered. Recall that we are
assuming that the velocity of the target is small, and its range
does not change significantly over several chirps. Numerically
this results in FFTs with peaks at the same frequency bin.
While unable to be resolved as different distances, this small
displacement manifests as a phase shift.

Suppose two chirps are sent T, seconds (usually in the order
of microseconds) apart. Recall that the IF signal is a sinusoid:

Ay (t) cos(2m ft + ¢o). 3

If the object is stationary, the phase term of the first chirp
will be identical to that of the second chirp. However, if there
is a small, non-zero relative velocity, this slight change in
distance will result in a phase delay between the closely spaced
chirps. Using a typical configuration of f, = 77GHz, with a
slope of B = 30MHz/us and T, = 40us between chirps, a
vehicle traveling at speeds of v = 18m/s (40 mph) will be
displaced by Ad = 0.72mm. This displacement is smaller
than the wavelength and this will manifest as a phase change

of o1 - 2Ad .

T ©))

where the factor of 2 in front of Ad accounts for the effective

change in radar wave traveling distance through a round trip.

Rearranging and dividing by the time between chirps, T,

we obtain the relationship between the phase difference and
the velocity of the target:

Ag =

AAP
T T
Velocities that result from phase shifts of greater than +7
will be aliased, or could also result in range bin migration. A
workaround for such situations is discussed in section III-D.
Numerically, the phase difference can be obtained by per-
forming an FFT across chirps. The number of chirps and the
period between the chirps determines the velocity resolution.
In a practical FMCW radar system, N chirps are sent
and processed as a group in order to determine the velocity
of the target. We call this sequence of N chirps a frame,
also commonly referred to as the coherent processing interval
(CPI), and this is the basic unit of FMCW radar signal just as
an image is the basic unit of a camera.

(10)

C. Estimating Angle of Arrival

Finally, with multiple receiving antennas, we can estimate
angle of arrivals using the same principle as Doppler estima-
tion as mentioned in the preceding section. However, instead
of using multiple chirps in time, we compute the FFT across
multiple antennas. In practice, especially for a small linear
array, using the FFT directly results in a very low resolu-
tion and noisy range-azimuth heatmap. More sophisticated
beamforming algorithms, e.g. MVDR[23] and MUSIC[24],
can instead be applied but the details are beyond the scope
of this discussion.

D. MIMO

Since angular resolution is related to the spatial diversity
of the receiving antenna array, it is advantageous to have
as many receiving antennas as possible. However, space and
computation often constrain the number of receiving antennas
too heavily to achieve fine angular resolution. One solution
to this is time division multiplexing (TDM) which leverages
multiple transmitting antennas along with a uniform linear
array (ULA) of receiving antennas. By transmitting identical
chirps successively from two adjacent antennas and approx-
imating the transmit times as the same, it is possible to
create instances of virtual antennas and subsequently increase
angular resolution. This method is thoroughly described in
[25].

Making the assumption that successive chirps are trans-
mitted simultaneously can cause errors in the phase when a
detected object has a nonzero velocity as seen in Fig. 3. This
stems from the motion of the target that occurs between the
two transmission times which can cause a discontinuity in the
phase. One easy way to correct for this is described in [26] and
suggests that before taking the FFT along the Doppler axis,
one should upsample the radar frame along that axis such that
the two different transmitters alternate. For example, for two
transmit antennas T'x(.; and four receiving antennas Rz.s,
one can upsample as follows:

Tl’oRiL’();g 0
0 T$1R£C0:3
T.’lﬁoRl‘Q;g 0 (11)

0 Tl‘l Rl‘o;3

where Tz, Rxg.3 is the data from all four antennas associated
with the nth transmitter.

Another undesirable result of TDM-MIMO is that if each
frame is constrained to N chirps, increasing the number
of transmitting antennas reduces the number of chirps per
transmitting antennas which in turn reduces the maximum
unambiguous velocity. One can overcome this reduction by
observing if there is a still a discontinuity in the phase due
to TDM-MIMO even after the phase correction described
above. As outlined in [27], for a system with two trans-
mitting antennas, there is a residual phase jump of +m if
the detected velocity is actually within [—2fp arews — D, Maz)
or [fp,Maz,2fD Maz), respectively, where fp arqp is the
maximum unambiguous velocity.
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Fig. 3. Using [26] with two transmitting and four receiving antennas (creating
a total of 8 virtual antennas), we see that the discontinuity in the phase due
to TDM-MIMO can be compensated for.
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Fig. 4. Our FMCW radar with a RealSense D435 RGB-D camera mounted
above it. The RealSense camera provides 1280x720 RGB images at 30fps,
an aligned depth map at the same resolution. Optionally, we can also record
stereo near-infrared images at 640x480, however this is not included in our
published dataset. The FMCW radar consists of 3 transmitting antennas and 4
receiving antennas. The receiving antennas are spaced A/2 wavelength apart
and the transmitters are spaced 2\ apart. This provides us with a virtual array
of 8 antennas.

E. Suggested Further Reading

Many aspects of FMCW radar signal processing are beyond
the scope of this paper. The topics covered in this section
pertain to our radar antenna configuration, MIMO mode, and
waveform selection. We encourage readers to refer to other
literature such as [28] in order to gain a deeper understanding
of FMCW radars or radars in general.

Open implementations of the methods discussed in this
section are available in OpenRadar [29], a library that we used
heavily in our work.

IV. MODULARIZED HARDWARE AND SOFTWARE
A. Sensors Overview

Our setup consists of an RGB-D camera and a 4-Rx 3-Tx
77GHz mmWave radar as photographed in Fig. 4. While the
radar in our setup has 3 transmitters, with one suitable for el-
evation estimation, we did not enable the elevation transmitter
in this dataset so as to improve our maximum unambiguous
velocity estimation and velocity resolution. The RGB-D sensor
module is an Intel RealSense D435i that includes an IMU.

B. System Architecture

Our data collection system is implemented on top of the
Robot Operating System (ROS) [30], so as to allow for
integration into ROS based autonomous driving systems.

Our radar consists of 2 hardware components, the radar
front-end with a Texas Instruments single chip radar and the
data acquisition card that streams the radar measurements
to a computer over Ethernet. In a typical setup, the single
chip radar acquires the raw radar signals and processes it
with the traditional FMCW radar pipeline as described in the
previous section, which results in sparse points for objects with
statistically significant returns. To retain the raw signals, we
run a bare minimum real-time firmware on the radar chip that
does not perform any signal processing. This results in a far
higher data rate than a typical setup and requires us to transfer
the data over a high-bandwidth Ethernet connection which
is provided by the data acquisition board. Different physical
requirements (i.e. max range, range resolution, max Doppler,
Doppler resolution, frame rate, etc.) can result in different data
rates. While our selection of hardware components allow a
maximum of 600Mbps, we found that 375Mbps is a more
manageable rate. Our datasets work within these limits to
ensure minimal packets are lost by the data recording host.
The RGB-D camera is controlled by the Realsense SDK. We
use it as is.

C. Temporal alignment between the radar and RGB-D camera

Depending on the radar configuration, the radar and the
camera may run at a different frame rate. Instead of an
external clock trigger, we allow the sensors to be triggered
independently by their own internal clocks. We maintain high
resolution time-stamps of each data unit received from the
individual sensors on the recording system. To this end, we
implemented a custom firmware on the radar that does not
perform any radar signal processing, but send out the raw
signals immediately after sampling. As for the RealSense
camera, high resolution timestamps were readily available in
the library provided.

D. Sensor Spatial Calibration

Calibration, the spatial transformation between the camera
image and the radar observation, is largely similar to that
of calibrating the transforms between multiple camera views,
with some modifications, as the radar is a ‘camera’ with
peculiar imaging properties.
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Fig. 6. Polar radar ’image’ to Cartesian transform. After range processing
and beamforming, we obtain a polar image(right). In the calibration process,
we transform this polar image into Cartesian coordinates. This image is the
bird’s-eye view of the scene in front of the radar and pixel coordinates is
directly proportional to the physical distances of reflectors in the scene.

Firstly, the appearance of objects in camera and in radar
is significantly different. Thus, the typical approach of per-
forming feature detection and key-point matching will fail.
In order to tackle this problem, we collected calibration
sequences consisting of objects that are easily identifiable both
in radar and in camera. Our chosen object is a radar corner
reflector, the radar equivalent of a retro-reflecting mirror in
the visible spectrum. This object will produce a strong and
well localized return in the radar’s measurement, thus easily
interpretable in the radar heat-map. Visually, this is a large,
silver octahedron, and we use the midpoint of this object
when computing correspondence with radar observations. We
use only one reflector in each frame so that we do not have
to disambiguate the source of the returns. Furthermore, we
collected the calibration sequence outdoors in an open space
to avoid potential problems due to multi-path effects. We
opted for outdoor data collection as opposed to using an RF
anechoic chamber which might be prohibitively expensive for
groups that do not have easy access to such facilities. Next,
we set the reflector on the ground for a short period of time
so as to remove the need of precise temporal calibration for
spatial calibration. Finally, we assigned point correspondence
manually from the camera image to the point with the strongest
return in the radar image over multiple frames.

Secondly, the radar ‘image’ after beamforming is not a
typical camera image, but an image in polar coordinates
(Fig. 6). As we are observing objects on the ground and
the height of our radar is relatively fixed, we do not expect
variations in height to result in significant changes to radial
range. Thus we model the cartesian projected radar ‘image’
as an orthographic projection onto the horizontal plane (zz-
plane, Fig. 5). Thus we will require some modification to the
typical approach used in multiple-view geometry.

In our calibration, we picked the camera frame, denoted

T .
x.= [z y 1], as the reference frame i.e.:

Aexe = A [1]0] W, (12)

where \. is a normalizer, A. is the camera’s intrinsic matrix,
W the homogenous world coordinates, and [I|0] is the
camera’s extrinsic matrix with the identity matrix and the
zero vector as its rotation and translation respectively. On
the contrary, we model the radar as having a rotation €2 and
translation T as in:

x, = A, [QIT] W, (13)

where x, is the pixel coordinates in the Cartesian radar heat-
map, and A, is the intrinsic matrix of the radar which can be
expressed as:

1 0 0 —1
A,=r|0 0 1 0 (14)
0 -1 0 1

Here, 1 = Tpaz/Tres 18 @ scale factor capturing the max range,
Tmaz, and range resolution, 7,5, of the radar configuration in
use. With this projection, we lose the y dimension of the world
coordinates and = and z are scaled according to the range of
the radar. Note that in contrast with perspective projection, we
simply drop the 3rd coordinate for orthographic projection.
Furthermore, by setting both x. and x, as functions of W,
we are able to work directly with the projection of world
coordinates into the radar frame simplifying the task of finding
point correspondences.

Because the radar is unable to detect the elevation of a given
target, we project the world coordinates determined from (12)
onto a plane by setting the vertical component to a constant
value for all W in (13).

With point correspondence and projection taken care of,
we can proceed with the multiple-view estimation of the
fundamental matrix, F = A, [©Q|T] by solving:

x, = FW
— x, Xx FW =0
0 -wWT  WT F,
— wT 0 —aWT F, | =0
—WT  WT 0 Fs
(15)

Since a single 2D/3D correspondence described in (15) only
has two linearly independent equations, at least 6 correspon-
dences are needed for a minimal solution. To determine such
a solution, one can solve the following equation using least
squares:

0f W[ -y Wi

Wip OT —1’1W¥1 F1

F, | =0,forn>6 (16)
07 WT  _y,WT |\ Fy

wl o7 g, W7

For the purpose of our dataset, obtaining the least squares
estimate of the fundamental matrix is sufficient. We can now
project objects and points observed in the camera image to the
radar image with

x, = FA A\ x, (17)
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Fig. 7. In Fig. (a), we see the results of feeding an RGB image into an
off-the-shelf deep neural network that detects humans. Using the calibration
methodology discussed in Section IV-D and the depth measured at the center
of the RGB bounding box, we are able to predict the location of those same
targets within the associated range-azimuth plot in Fig. (b).

While the fundamental matrix, F', can be decomposed into its
rotation and translation components [31], [32], it is beyond
the scope of our work. As the radar image is an orthographic
projection, the solution to this system will be ambiguous for
translations in the vertical(y) direction.

Calibration for different radar configurations: Our cho-
sen depth camera has a maximum depth of approximately
10m. Therefore, we perform our parameter estimation with
the radar configured to match this range. The results from our
estimation can be seen in Fig. 7. Here, the bounding boxes in
the range-azimuth frame are positioned by first determining
the location of the humans in the RGB frame using an off-
the-shelf neural network. From there, we set x. in (17) to
points on the perimeter of those RGB bounding boxes and
compute the locations of the projected bounding boxes in the
radar frame.

Depending on the radar configuration parameters, the max-
imum range, range resolution, and azimuth resolution can
change significantly. These changes can be computed from the
radar profile and should be incorporated into the radar intrinsic
matrix according to (14) when projecting points from the
camera frame. Since the relative position of the camera and the
radar are fixed (excluding unavoidable mechanical vibrations
when moving the data collection setup) we only need to

perform the calibration once for different radar configurations.
Concretely, this is a scale operation on the projected points x,.,
with scale factor

(18)

>\T1,7‘2 = r2,maz/rl,maza

where 7. ;4. is the maximum range of radar configuration 1
or 2, with radar configuration 1 being the calibrated configu-
ration.

For depth beyond reliable range of the RGB-D camera:
While scaling various elements in the radar’s intrinsic matrix
will suffice for targets within the 10m range of the depth
camera, to fully take advantage of the radar’s range and the
camera’s high resolution, one must compute the location of
the bounding boxes in the radar frame without the use of
the depth camera. One such method is to first perform some
object detection algorithm in the range-azimuth frame using an
algorithm like CFAR. Then, compute the azimuthal angle of
the targets in the RGB frame. This is done by first finding the
difference in the horizontal coordinates of the targets, x1"9¢
from the horizontal component of the camera center, :cge”t”.
Then, using the pinhole camera model with a focal length f,
the projected angle in the radar frame is just

xtarget _ xgente'r

1 c
fa

To simplify the procedure, here it is appropriate to assume
the translation and rotation between the radar and camera
are negligible. Subsequently, one can determine which objects
detected in the range-azimuth frame correspond to which
targets in the RGB frame by measuring the distance or overlap
between the projected angle and the detected object in the
radar. Similar to the scenario in which the depth camera could
be used, we demonstrate the efficacy in Fig. 8 by first using
a neural network to compute bounding boxes in the RGB
frame. Using (19), we create bounds in the horizontal axis
by projecting points on the box’s perimeter. From there, we
match the detections.

For the purpose of sanity checks, we’ve also provided
simple scenes consisting of one to a few targets. Furthermore,
we’ve also provided simple scenes containing a radar reflector.

0, = tan™ (19)

E. System constraints, scaling out and real-time considera-
tions

Our choice of radar hardware has the maximum capacity
of streaming 600Mbps of raw sensor data. In practice, we
recommend working with lower rates (below 325Mbps) to
ensure that recording software can keep up with the amount
of generated data. Together with the RGB-D images and IMU
data, we generate about 12GB of data per minute.

V. DATASET DESCRIPTION

Because radar heatmaps are very different from what hu-
mans see, it is very difficult for humans to generate ground
truth labels without special training and only given a radar
heatmap. Our dataset provides means of assisted labelling
with well synchronized RGB frames. The dataset consists
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X in Meters

(b) Range-Azimuth Plot with Azimuthal Bounds and CFAR Detections

Fig. 8. 1In Fig. (a), we see the results of feeding an RGB image into an
off-the-shelf deep neural network that detects cars. Using (19), we are able to
project those bounding boxes into azimuthal bounds in the range-azimuth plot
in Fig. (b). The two detected objects farthest to the right exhibit convincing
overlap with those bounds. The distant car in the left lane is detected in the
RGB image but is out of the detectable range of the radar configuration. The
detected objects on the left of the radar frame are caused by static clutter.

of a number of different radar chirp configurations that are
described in Table I as well as multiple types of scenes as
described in Table II.

A. Calibration Dataset

The calibration dataset contains scenes with few targets and
minimal static clutter to cut down on multi-path. For the indoor
radar chirp configuration, the scenes consist of a the radar
mounted to the ground with a radar-reflector placed at many
locations on the ground within the field of view in order to
test a variety of angles and radial distances from the camera
and radar. Calibration of the relative transforms between the
camera view and radar observations was performed using this
dataset. It should be noted that the maximum detectable range
for the indoor radar configuration is only slightly greater than
that of the depth camera. This allowed us to incorporate the
depth camera in our calibration. In our own calibration exper-
iments using hand labeled camera and radar data and (16), we
were able to achieve an MSE of .054 m? for targets within
8 m. While we do provide our own calibration parameters, we
share this sequence for others to reproduce our calibration or
to design novel calibration methods.

For the outdoor radar configuration that can detect targets
at ranges greater than 30 meters, we provide multiple scenes
with human and automotive targets in environments with
minimal static clutter. Although the depth camera is not able
to accurately see much more than 10 meters, it can still prove
useful when the targets are at closer ranges. Additionally,
because the environment is largely empty, it will be relatively
easy to associate targets between the camera images and the
range-azimuth plots at longer ranges.

B. Indoor Scenes

For the indoor scenes, we configured the radar to work at
a comparable range to our depth camera. The indoor scenes
consist of lobbies of campus buildings as well as a small eating
area. These scenes also include a variety of levels of human
activity. An example of a crowded scene is shown in Fig. 9a.

Indoor scenes present many unique challenges to processing
the data. First, due to the geometry and material makeup of
the enclosure, there will be observable multi-path. Moreover,
in many indoor settings, there is a high presence of static
clutter including, but not limited to, furniture and decorations.
Lastly, in indoor settings, human targets often interact in
close proximity to each other, a problem that is not as
prominent in outdoor driving settings. These characteristics
of indoor scenes demand further algorithm development in
the areas of detection, segmentation, and other related fields
of deep learning. The provided dataset offers an opportunity
to engineers to further develop algorithms and deep learning
architectures that can improve detection and segmentation with
radar data in these challenging environments.

C. Outdoor Scenes

We provide two subsets of outdoor scenes with different
radar configurations. One with shorter range, but better reso-
lutions (in both range and Doppler), and another with longer
range and large maximum velocity, but with poorer resolution.
We envision the radar on a vehicle to be able to change its
configuration adaptively depending on the scene it’s in.

The outdoor scenes consist largely of data collected from
inside a car that was driving on a road. The roads driven are a
myriad of neighborhood, suburban, highways and city roads.
The radar/camera setup was placed in two different positions
inside the car as seen in Fig. 10:

e On top of the front dashboard on the passenger side
looking in front of the car

« In the second row of seats looking out the passenger side
window

Both views offer unique perspectives of the road. The front
view, as shown in Fig. 9b, can see oncoming traffic, incoming
obstacles, street signs, guardrails when present, as well as the
reflections from the engine and hood of the car. The side view
offers views of traffic in adjacent lanes, off-road targets such as
humans and infrastructure, as well as guardrails when present.
While vision/radar sensors are often often seen mounted on a
car’s roof or exterior, it is also not uncommon to have those
sensors mounted inside the cockpit of the car. Furthermore,
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(a) An example frame from the indoor portion of the dataset. Here we see two people walking in front of a room full of people and static clutter. In the
centered range-azimuth plot, it clearly shows two targets with strong radar cross sections. In the right plot, the range-Doppler shows that the farther human
(tan bounding box) has a negative radial velocity while the other has a positive one. Furthermore, the red box around the zero-velocity region highlights
the large amount of static clutter present in the scene.

Doppler Velocity in m/s
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(b) An example frame from the outdoor portion of the dataset. In the centered range-azimuth plot, two cars, the buildings on the left, and the hood of the
car being driven are all visible. In the range-Doppler plot, we can see that the car containing the radar is moving faster than the two within range since
both of their radial velocities have negative magnitudes. It should be noted that between 0 and 3 meters, the engine of the car produces a very pronounced
signature in the range-Doppler. A closer look reveals discrete velocities resulting from the engine’s mechanics.

Fig. 9. Sampling of RGB frames and their associated range-azimuth and range-Doppler plots.

Max Max Data
Profile Range Range Velocity*  Velocity rate
Name (m) Res (m) (m/s) Res (m/s)  FPS (Mbit/s)
indoor 14.24 0.047 4.86 0.30 30 77
outdoor30  37.47 0.20 15.43 0.48 30 98
outdoor60  62.45 0.97 23.02 0.36 30 65
highRes 14.24 0.047 2.78 0.043 222 229

TABLE I

DATA SUBSETS AND THE PHYSICAL PROPERTIES OF THE ASSOCIATED RADAR CONFIGURATION. *THE MAXIMUM VELOCITY CAN BE EXTENDED
TWOFOLD USING [26] AND [27].

Scene Type Radar frames  Aligned RGB  Depth available IMU available
Calibration(indoor) 28,245 yes yes no
Indoors(indoor) 141,724 yes yes no
Parking lot stationary (outdoor30) 64,390 yes partial* no
Highway(outdoor60) 19,337 yes no yes
Urban/Suburban(outdoor30) 101,468 yes partial* yes
Urban/Suburban(outdoor60) 33,494 yes partial* yes
Single Human Walking(hihgRes) 5,223 yes yes no

TABLE II

NUMBER OF FRAMES IN EACH RADAR CONFIGURATION AND SCENE SUBTYPES. DEPTH MEASUREMENTS FROM OUR DEPTH CAMERA IS ONLY RELIABLE
UP TO 10M, THUS SOME ARE EXCLUDED FROM THE ALIGNED FRAMES IN THE OUTDOOR SCENES IN THE LONG RANGE CONFIGURATION. THE IMU
MEASUREMENTS WERE TAKEN AT A MUCH HIGHER RATE THAN THE RGB AND RADAR SENSORS AND HAVE THEIR OWN TIME STAMPS AVAILABLE FOR
DEAD-RECKONING PURPOSES.
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Fig. 10. The two ways in which the radar system was mounted in the moving
vehicle for the scenes on the road. In both cases, there was a window in front
of the system. For the data from the front facing radar, there are reflections
caused by the front of the car, namely the hood and engine.

such a mounting enables the retrofitting of older cars with
smart sensors for collision avoidance [33].

Additionally, there are scenes that were taken from a moving
wheelbarrow on the road. This unique part of the dataset offers
closer and longer views of both cars and humans.

D. High Doppler Resolution

Lastly, our dataset provides synchronized RGB-D and radar
data that aims to capture the finer micro-Doppler features
of human motion. To accomplish this and stay within the
constraints of our hardware and ROS setup, the configuration
increases the Doppler resolution of the indoor configuration
while lowering the frame rate slightly. Using this configuration
with walking humans reveals the cyclic nature of human
motion including one’s arms, legs, and even torso.

VI. RICH RADAR OBJECT DETECTION AND RGB-D
EARLY FUSION

With raw ADC measurements and good synchronization
with an RGB-D camera that’s easy for humans to interpret
and label, we present several opportunities to take radar object
detection to the next level.

A. Human Tracking with Radar and Depth

In order to highlight the utility of synchronized radar
and RGB-D measurements, we implemented a simple human
tracker in radar and compared the results we obtained from
the depth camera. In order to make the best use of the
depth measurements, and not to amplify small errors through
computation, the human walked directly in front of the radar
system so that the measured depth roughly corresponded to
the range. To detect the location of the human target, we first
computed the range-Doppler spectrum and then subsequently
used CFAR to find the cluster that corresponded to the human.
Within the target’s cluster, we took a few of the points with
the highest complex magnitudes and averaged their range and
Doppler-velocity values for each radar frame.

To determine the depth using the RGB-D camera, applied
OpenPose [34] on the RGB frames to find the locations of each
of the prominent body-parts. From there, we took the location
of the torso and found its depth using the corresponding depth
image. As seen in Fig. 11, the data from the two sensors are
aligned very well. Furthermore, the velocity results highlight

one of the advantages of using radar over traditional RGB-D
sensors. Not only does the radar exhibit far less noise than
the depth camera, but it also shows the slight variations in the
torso’s velocity due to each step.

B. CFAR+: Beyond CFAR object detection

While CFAR, as employed by commercially available radar
pipelines, can provide a list of statistically significant radar
reflectors as objects, it is unable to differentiate between
object classes. With a temporally and spatially aligned RGB-D
camera, we can overcome the barriers of labeling otherwise
uninterpretable radar signatures either by employing human
labelers to label objects in RGB or by automatically applying
RGB object detectors on the RGB image, and projecting these
labels onto the radar frame, thereby allowing us to inspect the
radar signatures of objects in their environment. With such
labels, we can go beyond CFAR object detection in radars and
create object detectors by applying data-driven object detection
methods that were successfully applied to RGB images in a
similar method as proposed in [18].

However, object detection networks are known to have
difficulty in detecting small objects[35]. Several recent works
specifically seek to address this problem. With our indoor radar
configuration, assuming that a human occupies the space of a
70cm square, we should see a radar signature of approximately
12 pixels in the range dimension. While RGB image object
detector methods might prove useful for larger objects like
cars as in [18], similar performance might be impossible for
smaller objects such as humans or bicycles.

In contrast to RGB images, the radar domain has two
advantages. First, physical object sizes correspond directly to
sizes in the Cartesian projected image. Therefore, we do not
need to handle multiple object sizes for the same object class
in the same radar configuration. Next, we can assume that our
objects of interest will show up as CFAR targets if they reflect
the wavelength in use. This allows us to use CFAR detections
as object proposals, followed by a classifier on the patch
surrounding the CFAR target, assuming that humans have
a different radar signature than other statistically significant
radar reflectors present in the environment.

To investigate this, we performed our experiments on the
indoor dataset, where there are much more radar reflectors
compared to an open, outdoor environment. For each RGB
image, depth, and radar tuple, we ran a recent state of
the art object detector, EfficientDet D6[36], to obtain a list
of bounding-boxes in the camera frame of objects detected
as ‘person’. These boxes are projected to the radar frame
using the calibration parameters described in Sec. IV-D. Next,
we applied cell-averaging CFAR on the range-azimuth radar
heatmap to obtain a list of point targets. For each point target,
we checked if it was enclosed by a projected bounding box. If
it was, we extracted a small patch, 32x 32 (1.5m x 1.5m), from
the cartesian projected heat-map around the point target as a
class positive training. Points that were not within a bounding
box were labeled as environmental reflectors. A sampling of
such patches can be seen in Fig. 12. We observed that the
neighborhood around CFAR detections corresponding to the
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(a) Radar and Depth measurements of a human walking back and forth from the radar system
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(b) Magnified portion of the human walking away from the radar system

Fig. 11. Plots that show the range/depth and velocity of the torso of a human target. The depth measurements were smoothed using a linear Kalman filter.
Despite the smoothing, the depth camera still exhibits a high presence of noise which is conveyed in the velocity plots. On the contrary, in the bottom right
plot, the radar’s velocity measurements are precise enough to detect the small fluctuations due to the stepping motion of the human.

Fig. 12. Randomly selected samples of 32 x 32 patches surrounding CFAR
detections points in the indoor dataset. The top row shows detections that
were not enclosed by projected bounding boxes and the second row shows
patches where detections were enclosed by a projected ‘person’ bounding box.
We observe that the radar signatures are qualitatively different from strong
reflectors present in the environment.

‘person’ object is qualitatively different from environmental
reflectors, thus it is reasonable to assume that we can create
an object classifier for such patches.

1) Preparing the classifier dataset: We generated our train-
ing dataset automatically using projected bounding boxes
predicted by the EfficientDet-D6 RGB object detector. As
there are much more environmental reflectors than there are
people in our dataset, we balance the classes in the training
dataset by randomly dropping the environment clutter patches
so that we end up with a class balanced dataset. Finally, as our

Network Train Acc.(%)  Val Acc.(%)  Parameter count
Ours (linear) 95.4 83.1 1.7M
Ours (log) 92.7 80.0 1.7M
MobileNetv2[37] 93.6 85.1 2.23M
ResNet50[38] 94.4 84.08 23.5M
VGG16[39] 49.9 50.0 33.6M
TABLE III

PERFORMANCE OF OUR RADAR SIGNATURE CLASSIFICATION NETWORK IN
COMPARISON WITH SEVERAL MODERN RGB CLASSIFICATION NETWORK
ARCHITECTURES

dataset consists of video frames, to ensure that our validation
dataset is not too similar to the training set, we selected distinct
video sequences instead of random frames from the entire
collection. Our resultant training dataset consists of 143617
person examples and clutter examples of each, whereas our
validation dataset consists of 16 108 examples of each.

2) Radar classification network: We implemented a small
network of three 7 x 7 separable convolutional layers with ELU
activations[40], followed by 2 dense layers with 256 hidden
units and ELU activations as our classifier network. We also
compared our results with several well-known image classi-
fier architectures, [37], [38], [39] on the generated classifier
dataset. For all networks, we used the Adam optimizer[41],
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with learning rate 1 x 1073, 8, = 0.9 and B, = 0.999
and trained with a batch size of 128. Finally we applied
random left/right flipping as data augmentation and used early
stopping as regularization. We did not use other methods
for data augmentation use in image classification as they
do not have physical meaning in the radar heatmap domain.
Finally, for ResNet50 and VGG16, we applied I5 weight decay
of 1 x 107°[38] and 5 x 10~#[39] respectively, as described
in the original papers. No weight decay was applied for
MobileNet as recommended in the original paper[37]. We
trained each network for 200 epochs and evaluate every epoch,
retaining the best performing model on the validation set.
All networks were trained from scratch with Glorot uniform
initilization[42] as implemented in TensorFlow. The perfor-
mance of each network network on our dataset is shown in
Table III.

3) Discussion of classifier performance: We found that
good performance on natural images does not translate to good
performance on the Cartesian-projected radar heatmap patches.
In contrast to architectures with good performance on natural
images, we found that shallower networks with larger filter
sizes can give performance comparable to very deep networks.
Moreover, using only 3 x 3 filters, and relying on pooling and
depth to increase the receptive field sizes resulted in networks
that failed to converge. We also found that while applying a
logarithmic scale to the heatmaps resulted in better images
for human interpretation, it did not help in deep network
performance. The relative small size of the dataset might result
in networks with large number of parameters, like ResNet50
and VGGI16, to overfit, thus resulting in poor performance.
In the case of overfitting, we would expect very high training
accuracy but poor validation accuracy. This, however, is not
observed in our experiments, and we speculate that intuition
and priors[43] that arise due to the network achitectures for
natural image classifiers might not apply for our data.

VII. CONCLUSION

We demonstrated baseline results and presented scenarios
where modern advances in deep learning could help in getting
richer object detection from automotive FMCW radars. We
encourage fellow researchers to beat us on our baseline,
improve on early stage preprocessing, and design novel net-
work architectures suited for object detection and fusion using
previously unavailable low-level radar signals.

On top of providing our dataset, we’ve also included our
hardware BOM and design files which can be 3D printed. We
also encourage groups with sufficient resources to build their
own system and collect additional data.

Lastly, we also demonstrated the flexibility of a software
configurable FMCW radar with our dataset. No hardware
changes were required to allow usage where signal require-
ments were significantly different. A next step in development
would be to allow object detection algorithms to actively
reconfigure the radar for better performance.

A. Future Work

While we demonstrated a successful use of deep neural
networks much earlier in the radar signal processing chain,

the work done is not exhaustive. We strongly believe that
much better results can be achieved with a more in-depth
exploration, for example, transfer learning from pretrained
networks, more object classes, and alternative network ar-
chitectures. Improvements to our simplistic RGB to radar
matching methodology could also be explored. Next, while
available in the dataset, we did not make use of IMU data,
which could be useful in situations where single frame depth
measurements are not reliable. Finally, our placement of the
radar is within the vehicle cockpit, which may not be ideal for
all situations. Other mounting locations of our sensor system
could also be explored.
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