AUDIO SUPER-RESOLUTION WITH TIME-FREQUENCY NETWORKS

JLLINOIS

MOTIVATION

Task: Recover high sample rate audio from low sample rate audio

- ill-posed
- linear filters and interpolation are unable to recover high frequency sounds and produces muffled sounding results
- given prior knowledge on type of audio, results could be better

Contributions:

- Novel network architecture
- Joint optimization for patterns in frequency and time domain

INTRODUCTION

Problem formulation:

- **Given:** Low resolution audio x
- **Predict:** High resolution audio \hat{y}

Intuition:

- Audio SR, transformed to spectral domain, is analogous to semantic image inpainting
- Spectrograms consists of visual structures
- CNNs are particularly good at capturing visual structures

Teck-Yian Lim^{*}, Raymond A. Yeh^{*}, Yijia Xu, Minh N. Do, Mark Hasegawa-Johnson Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign * indicating equal contribution.

Input **DC Passthrough:**

cies

• DC component of signal is not expected to change

Time [s]

1.5

Spectral Fusion:

- retain magnitude from frequency branch
- uses phase from time branch

$$M = w \odot |\mathscr{F}(\hat{z})| + (1 - \hat{y}) = \mathscr{F}^{-1}(Me^{j \angle \mathscr{F}(\hat{z})})$$

where \mathscr{F} denotes the Fourier transform, \odot is a element-wise multiplication and w is a trainable parameter.

Output

 $w)\odot\hat{m},$ $^{(\hat{z})}),$

RESULTS

Datasets:

- glish with various accents
- able

Quantitative results:

Model	Rate	VCTK _s	VCTK	Piano
Bicubic	4	14.8 / 8.2	13.0 / 14.9	22.2 / 5.8
Li et al.	4	15.9/4.9	14.9 / 5.8	23.0 / 5.2
Kuleshov et al.	4	17.1/3.6	16.1/3.5	23.5 / 3.6
Ours	4	18.5 / 1.3	17.5 / 1.27	23.1 / 3.4
Bicubic	6	10.4 / 10.3	9.1 / 10.1	15.4 / 7.3
Kuleshov et al.	6	14.4/3.4	10.0/3.7	16.1/4.4
Bicubic	4	9.9 / 20.5	8.7 / 18.34	14.5 / 11.59
Ours	8	15.0 / 1.89	12.0 / 1.90	15.69 / 9.64

Ablation results:

Model	Rate	VCTK
Time Branch Only	4	11.71/4.89
Spectral Branch Only	4	7.73 / 1.5
Both Branches	4	17.5 / 1.27

Qualitative Observations:

- Fewer artifacts in the form of pops and clicks
- Missing notes in piano pieces cannot be recovered

FUTURE WORK

- and numerical analysis
- Redundant representation appears to be helpful
- Application to tasks such as audio generation

• VCTK Corpus 16bit, 48kHz recordings of 109 native speakers of En-

• Beethoven Piano Sonatas: 16bit, 48kHz of 32 piano recordings publicly available on http://archive.org. No information on pianist avail-

https://goo.gl/b7ekVm

• Interesting and promissing emprical results warrent further theoratical